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Introduction

Growth in Augmented Reality Devices and Internet connected cars is cre-

aধng use-cases that convenধonal video processing systems are unable to

handle. In many of these cases video is streamed to a remote server for

processing[3].

Goals:

To facilitate the creaধon of distributed video processing pipelines.

Real ধme video processing

Arbitrarily high scaling

Dynamically changing pipelines

Transparent distribuধon over a server cluster

Shared resources between pipelines

Current Approach:

In most video focused stream processing systems, like Scanner[1] and

VideoStorm[5], tasks are represented with Directed Acyclic Graphs (DAGs).

Since the graphs are staধc there is no way to dynamically change the

workload. This can cause unnecessary work and limits on single video

processing speed.

Proposed Soluধon:

Instead we take a user-defined fold funcধon. This funcধon is used to build

the graph as new informaধon becomes available.

Implementation

Split between Input, Workers, and the Controller

Connected through a Redis database

Each task is performed by one or more workers

Each controller defines a video's pipeline
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Figure 1: Per-frame data and control flow

Data Representaধon

Frame data and metadata stored as binary string map

Frames and tasks referenced by ID

Task queues sorted by priority and user provided key

Controller Design

debt = 0.0

function onImageInput(frame)
    vt.taskQueue("motionDetect", frame, "", motionCallback, "")
end

function motionCallback(frame)
    local task = vt.taskGet(frame, "motionDetect")
    local frameChange = json.decode(task)["diff_ratio"]
    debt = debt + frameChange

    if debt > 0.10 then
    debt = 0.0
        vt.taskQueue("yolo", frame, "", yoloCallback, "")
    else
        vt.frameDelete(frame)
    end
end

function yoloCallback(frame)
    vt.frameDelete(frame)
    print("Finished with frame " .. frame)
end

Figure 2: Example control script

Fold funcধon defined as Lua script

Context represented primarily as global variables

Asynchronous programming model

Per-video scalability limited only by controller script execuধon

Evaluation

Experiment 1: Object Detecধon

24,941 video frames from Berkeley DeepDrive[4] dataset

OpenCV Moধon Detecধon

Darknet Yolo[2] Object Detecধon

Figure 3: Annotated frame from evaluaধon
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GPU 70-74ms 2ms 85-100ms
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Figure 4: Moধon detecধon experiment results

Effecধvely reduced work through moধon detecধon load shedding

Single device performance consistent with 1, 2, 8, and 48 CPU cores

CPU: 2x Intel Xeon Gold 6126, GPU: Nvidia TITAN Xp

Experiment 2: Simulated Load at Scale

Generated dataset of 100,000 frames

Simulated neural network type workload

Tests controller instead of frame store and tasks
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Figure 5: Simulated Load at Scale Test
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Figure 6: Pipeline delay overhead from theoreধcal compute ধmes

Upper end throughput of 4500-4900 fps with instant task execuধon

3000+ fps on normal workloads given sufficient hardware

More efficient for longer tasks with many workers

HoloLens Video Streaming

Demo built to overlay found objects

Video stream consumed from device for processing

<100ms processing ধme per frame

Device video encoding overhead causes large majority of delay
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