
On the Fly Dynamic Graph Generation for Video Processing
Dominik Winecki
The Ohio State University

Introduction

Growth in Augmented Reality Devices and Internet connected cars is cre-

aধng use-cases that convenধonal video processing systems are unable to

handle. In many of these cases video is streamed to a remote server for

processing[3].

Goals:

To facilitate the creaধon of distributed video processing pipelines.

Real ধme video processing

Arbitrarily high scaling

Dynamically changing pipelines

Transparent distribuধon over a server cluster

Shared resources between pipelines

Current Approach:

In most video focused stream processing systems, like Scanner[1] and

VideoStorm[5], tasks are represented with Directed Acyclic Graphs (DAGs).

Since the graphs are staধc there is no way to dynamically change the

workload. This can cause unnecessary work and limits on single video

processing speed.

Proposed Soluধon:

Instead we take a user-defined fold funcধon. This funcধon is used to build

the graph as new informaধon becomes available.

Implementation

Split between Input, Workers, and the Controller

Connected through a Redis database

Each task is performed by one or more workers

Each controller defines a video's pipeline

Input Redis

Controller
Mo�on

Yolo

Set Frame

Drop Frame

onImageInput()

onImageInput()

task:mo�on() task:mo�on()

Get Frame

Set Metadata

~task:mo�on()~task:mo�on()

Get Metadata

task:yolo() task:yolo()

Get Frame

Set Metadata

~task:yolo()~task:yolo()

Figure 1: Per-frame data and control flow

Data Representaধon

Frame data and metadata stored as binary string map

Frames and tasks referenced by ID

Task queues sorted by priority and user provided key

Controller Design

debt = 0.0

function onImageInput(frame)
 vt.taskQueue("motionDetect", frame, "", motionCallback, "")
end

function motionCallback(frame)
 local task = vt.taskGet(frame, "motionDetect")
 local frameChange = json.decode(task)["diff_ratio"]
 debt = debt + frameChange

 if debt > 0.10 then
 debt = 0.0
 vt.taskQueue("yolo", frame, "", yoloCallback, "")
 else
 vt.frameDelete(frame)
 end
end

function yoloCallback(frame)
 vt.frameDelete(frame)
 print("Finished with frame " .. frame)
end

Figure 2: Example control script

Fold funcধon defined as Lua script

Context represented primarily as global variables

Asynchronous programming model

Per-video scalability limited only by controller script execuধon

Evaluation

Experiment 1: Object Detecধon

24,941 video frames from Berkeley DeepDrive[4] dataset

OpenCV Moধon Detecধon

Darknet Yolo[2] Object Detecধon

Figure 3: Annotated frame from evaluaধon

Yolo Moধon Full

CPU 8.9-9.3s 2ms 8.9-9.3s

GPU 70-74ms 2ms 85-100ms

Motion Change Threshold (proportion)

Ti
m

e
(m

in
)

0

10

20

30

40

50

0

0.
05 0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Figure 4: Moধon detecধon experiment results

Effecধvely reduced work through moধon detecধon load shedding

Single device performance consistent with 1, 2, 8, and 48 CPU cores

CPU: 2x Intel Xeon Gold 6126, GPU: Nvidia TITAN Xp

Experiment 2: Simulated Load at Scale

Generated dataset of 100,000 frames

Simulated neural network type workload

Tests controller instead of frame store and tasks

Workers (count)

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

0

100

200

300

400

500

16 32 64 128 250

0ms Tasks 37.5ms Tasks 75ms Tasks 150ms Tasks 300ms Tasks

Figure 5: Simulated Load at Scale Test

Task Time (s)

O
ve

rh
ea

d
Ti

m
e

(s
)

0

10

20

30

0ms 37.5ms 75ms 150ms 300ms

16 Workers 32 Workers 64 Workers 128 Workers 250 Workers

Figure 6: Pipeline delay overhead from theoreধcal compute ধmes

Upper end throughput of 4500-4900 fps with instant task execuধon

3000+ fps on normal workloads given sufficient hardware

More efficient for longer tasks with many workers

HoloLens Video Streaming

Demo built to overlay found objects

Video stream consumed from device for processing

<100ms processing ধme per frame

Device video encoding overhead causes large majority of delay

Acknowledgements

This research was conducted with support from FacultyMentor Arnab Nandi.

References

[1] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian.

Scanner: Efficient video analysis at scale.

CoRR, abs/1805.07339, 2018.

[2] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.

You only look once: Unified, real-ধme object detecধon.

CoRR, abs/1506.02640, 2015.

[3] Cisco Systems.

Cisco Visual Networking Index: Forecast and Methodology, 2016-2021.

Technical report, 2017.

[4] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor Darrell.

BDD100K: A diverse driving video database with scalable annotaধon tooling.

CoRR, abs/1805.04687, 2018.

[5] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Maħhai Philipose, Paramvir Bahl, and Michael J. Freedman.

Live video analyধcs at scale with approximaধon and delay-tolerance.

In 14th USENIX Symposium on Networked Systems Design and Implementaࣅon (NSDI 17), pages 377--392, Boston, MA, 2017.

USENIX Associaধon.

